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Abstract

Numerical approximations to the Fourier transformed solution of partial differential equations are obtained via Monte
Carlo simulation of certain random multiplicative cascades. Two particular equations are considered: linear diffusion equa-
tion and viscous Burgers equation. The algorithms proposed exploit the structure of the branching random walks in which
the multiplicative cascades are defined. The results show initial numerical approximations with errors less than 5% in the
leading Fourier coefficients of the solution. This approximation is then improved substantially using a Picard iteration
scheme on the integral equation associated with the representation of the respective PDE in Fourier space.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Stochastic processes have been found to have important connections to deterministic partial differential
equations (PDEs), most notable being the relationship between the linear diffusion equation and Brownian
motion through the Feynman—Kac formula (e.g. see [1,12]). In later developments, probabilistic representa-
tions have been found to solutions of semilinear and quasilinear equations. Important examples include the
well-known example by McKean [2] for the solution to the KPP equation as the expected value of a functional
of branching Brownian motion, and more recently the work in [3], where the solution to the incompressible
Navier—Stokes equations is written in terms of a jumping and branching Brownian motion.

In each of the three works cited above, the solution to the PDE is represented as the expected value of a
functional acting on the sample paths of certain stochastic process evolving in physical space. This paper deals
with the analogous idea in Fourier space, along the lines of the method introduced in [9] for the Navier—Stokes
equations. Namely, multiplicative functionals of tree-like stochastic models are used to give probabilistic
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representation of the Fourier transform of the solution to the PDE. Two particular examples are considered:
simple linear diffusion with a potential and viscous Burgers equation. Further restrictions are imposed to the
Fourier transform of the data in each PDE to achieve the probabilistic representation.

The main emphasis is on the design of Monte Carlo simulation schemes to numerically approximate the
solution of each PDE in Fourier space. The initial approximations are further improved by means of numer-
ical Picard iteration.

In order to fix the main ideas of the methods used in subsequent sections of this paper, consider the simple
example of the diffusion equation with Fickian flux and a sink term of constant rate ¢ > 0,

U =ty +cu, t>0, u(0") =u. (1)

Feynman—Kac’s formula gives the following explicit probabilistic representation of the solution u in physical
space,

/ Fe K 1y () dy = E,{Lisoquo(B.) ). )

where B = {B,:t > 0} is a standard Brownian motion and S is an exponentially distributed random variable
independent of B, namely P(S > ¢) = e, ¢ > 0. The symbol E, denotes expectation conditioned to the event
[Bo = x]and 15 - 4 denotes the indicator function of the event [S > ¢], i.e., 1;s > is 1 or 0 depending on wether
[S > t] occurs or not.

The probabilistic representation in (2) helps create a very clear and intuitive physical picture of the solution
to the PDE: for ¢ > 0, particles initially distributed according to u, start moving (diffusing) following the paths
of B and are “killed” at a random time S; u(x, ¢) is the expected fraction of surviving particles that occupy the
point x at time ¢.

A generalization of the example (1) will be revisited in Section 2, but in contrast to the description above,
the solution is now represented probabilistically in Fourier space. Namely, the Fourier transform of u

(1€)== = [ et ax
which from (1) satisfies
i (1,8) = =Eu(t, &) + cin(t, &), >0, a(07) = i, (3)

is expressed as the expected value of a functional of some process that takes values in time-frequency space.
The problem in (3) can be solved exactly in a variety of ways. One non-obvious method that illustrates the
main ideas used in this paper is outlined below.
Multiply both sides of (3) by ¢ and integrate on (0, 7) to get,

i(t, &) =e iy (& 5 / —5,&)ds, (4)
[E{a (O + S50 = S0 . 8
where Sy is an exponentially distributed with
P(So > ) =e . (6)
The goal is now to use (5) to construct a stochastic model z and a functional X = X(7) such that
i(t, &) = EX(1). ()

Consider a root vertex (0). Assign to it a frequency (or type) &, and compare a realization of the random time
Sy to the termination time of (0) denoted by T, = ¢. In the event that S, > ¢, the process stops and the mul-
tiplier Mo = ug(&) is assigned to {0). If Sy < 7, a new vertex (1) of 7 is created. In this example, the frequency of
the vertex (1) remains equal to &, i.e., is selected according to the Dirac delta distribution J.. The respective
multiplier is M| = g% The construction of 7 is continued by generating an exponential time .S; independent of,
and with the same distribution (6), as Sy. The termination time of the vertex (1) is set to 77 =¢ — Sy.
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Let N be the number of vertices in 7, and define X as the following multiplicative functional

N-1

X(t) = [[ M. (8)

i=

The formulation is then completed by showing that indeed (7) holds. This can be done following the lines of
the proof of Theorem 2.1.

The probabilistic formulations given in (5) or (7) do not immediately point to a physical picture as clear as
the one obtained by Feynman—Kac’s formula (2) in physical space. Nevertheless, the stochastic model (8) gives
a useful way of studying solutions in Fourier space and, in particular, is amenable to numerically estimate .
Two techniques are used in this paper to achieve this, and can be illustrated with the derivations in the exam-
ple above. The first is direct Monte Carlo simulation of the expected value in (7). The second is more classical
and stems from understanding (4) as the fixed point equation u(¢, &) = F (i, t, £), where F is the linear operator
given by the right-hand side of (4) on an appropriate Banach space. Provided that F'is a contraction in the
norm of the space under consideration, a solution is given by & = lim, ...&" with 4"V =F (it(”>, t, &),
n=0,1,2,... (see [4] for more details). This latter method is referred to in this paper as Picard iteration.

A probabilistic formulation along the lines of the illustrative example (1) is available for a diverse class of
evolution equations, including reaction—diffusion, Schrédinger, Burgers and Navier—Stokes equations (see [5—
8)). In the seminal work of [9], the authors show that the Fourier transformed solution to the incompressible
Navier—Stokes equations in three dimensions satisfies an equation of the form of (7) with t having tree graph
structure. The branching at the vertices of t is produced by the quadratic nonlinearity in the PDE, very much
like the branching necessary for McKean’s solution to KPP equation in physical space (see [2]).

The stochastic process involved in the probabilistic representation of Navier—Stokes in Fourier space is dif-
ficult to model due to the three degrees of freedom in the frequencies assigned to the vertices of 7. Fortunately,
the main features of the associated multiplicative random functional appear also in the probabilistic formu-
lation of the one-dimensional Burgers equation in Fourier space. The branching at the vertices of 7 is linked
to the nonlinear term common to both equations. The example of Burgers equation is worked out in detail in
Section 3.

In the probabilistic formulation for Burgers and the Navier—Stokes equations, the branching structure
requires that one specifies the probability distribution of the frequency of the offspring vertices given the fre-
quency of the parent vertex. In the case of the diffusion equation (1), where t has no branching, this distribu-
tion was a Dirac delta distribution. Admissible distributions are referred to as majorizing kernels, were studied
thoroughly in [10] for the case of incompressible Navier—Stokes equations. The authors also show how the
majorizing kernel can be used in establishing existence and regularity of solutions.

Although the theory and numerical schemes explored here are mathematically motivated, there is hope for
a physical intuitive picture for the branching stochastic model in the probability formulation of Burgers or
Navier—Stokes equations in Fourier space. The branching process t, together with the multipliers associated
to its vertices, is referred to as a stochastic cascade (see [5] and references therein). This name is appropriate,
especially when viewed in terms of Kolmogorov’s statistical theory of turbulence. Identifying the actual link
between the probabilistic formulation and Kolmogorov’s cascade is still a very important open problem. It is
conceivable that the majorizing kernels that determine the branching in 7 are related to the physical rates of
transport of energy between frequencies in turbulent flows. The numerical models reported in this paper are
simple tools that might help to shed light on this relationship.

The organization is as follows. The rest of this introduction settles down some terminology on the main
tools to be used, namely Fourier transform and tree graphs. The linear diffusion equation with potential

2
u, = %um + c(x)u

is considered in Section 2, and Burgers equation
u, + V2muu, = vu,, + (¢, x)

is treated on Section 3.
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Some remarks on notation are in order. All partial differential equations are assumed to hold in the Sch-
wartz class of tempered distributions &’. The Fourier transform on .’ is defined through its action on test
functions as

{ e p(x)dr, ¢ER, ¢€CT(R).

In the case of perlodlc distributions, the Fourier series representation is available,

1 .
u=——>9Y ak)e™, wuec9, uperiodic. 9
T e, e s up ©
Details on the construction of the Fourier transform on .%” and its properties can be found in [4] or [11].
Tree graphs are used in this paper as a suitable frame to define certain multiplicative processes, and only a
bit of special notation is required. A tree graph 7 is a connected graph of vertices with no cycles, and with
vertex set containing a unique root vertex coded as (0). The edges of a tree are determined by the relation “be-
longs to the offspring of”. The n vertices in the offspring of (0) are coded by (1),(2),. . .,{n(y). The vertices of
second generation, i.e., the offspring of some (i), are coded as (i1}, (i2), . . ., {in¢). Inductively, a vertex of the nth
generation of t has the form (v) = (i1i»...i,), where i, is a positive integer for each k. For a vertex
(v) = (i1is. . . iyits length is defined as [(v)] = n with the convention [{0)] = 0. For j =1,2,...,[(v)], the jth level
of (v) is the vertex let (v)|j = (i, . . ., i), (M)|0 = (0). The sequence {{(v)|0, (W)|1,....{v)} can be viewed as a path
connecting (0) with (v).

2. Linear diffusion equation

Consider the one-dimensional linear diffusion equation in (—oo,o0) with constant diffusion coefficient
%az > 0, potential ¢ = ¢(x) and initial condition uy = uy(x),

a2

u,(t) = Euxx(t) +cu(t), t>0 u(0%) = u. (10)

Assume that ¢ and ug have Fourier series with a finite number of terms, and that the Fourier coefficients of ¢

are all nonnegative. In particular, ¢ and u, are periodic and there exist finite sets of frequencies {;};, and
{B;}",, such that

€ = = Doele, ) = S il (1)

Assume furthermore that
¢(a;) >0, i=1,...,m,, (f;) #0, j=1,....,m

112 .
Take Fourier transform on both sides of Eq. (10) and use the integration factor e7% to get

u(t, &) = e‘%iz’ito(é) + / e‘%zs{i ¢(oy)u(t — s, & — a,)} ds. (12)

0 i=1

The integral equation (12) can readily be written as the expected value of some multiplicative process, how-
ever, for computational reasons described in (2.1), is more convenient to introduce an exponential factor
whose argument does not depend on &, for example e ’. Define

me

m(t,&) = e 5w (1,8) = m(t,8) Y é(a0) (13)

i=1

and write

u(t, &) = m(t, Ee g (&) + /Oresm'(s, &)
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The representation in (14) suggests the following stochastic model for &. For each >0, ¢ € R, consider the
linear tree graph

t(1,¢) = {{0), (1), (1), (111), ...} = {{0), (1), (2), (3), - .}

and let (Q, 7, P;) be a probability space. To each vertex (i) associate a Fourier wavenumber (or type) .y and
a exponentlal random time S, with P(S;) > s) =e™*, s > 0. Equip the sequence of types {,}~, with a ran-
dom walk structure with mutually 1ndependent and identically distributed increments #y y= Eui1y — Eiy
satisfying

el _
Pe(nyy = —ou) = S o5 k=1,.

j:

. (15)

Then Eq. (14) can be written as
u(t, &) =k {1[S0>>t]m(t O)itg (&) + Vs, <qm(Sioy, S)ua(t — S, € + 71<o>)} (16)

hinting that & can be represented as the expected value of a random product. Define termination times by
T<0>:l, T<i+1>Zt—(S<o>+'-~+S<i>), i=0,1,...

and let N = N(t(¢,&)) = inf{i: S, > Ty»}. The random variable N gives the total number of vertices of T and
has a Poisson distribution with mean ¢, namely P(N = n) e~ 't". Define the multiplicative functional
X(t, &) = X(z(¢, f)) of the random collections {¢; }l 0s 18 } )

where for N = 0 the product in parenthesis is taken to be one. The following holds
Theorem 2.1. For t >0, &= &,

u(t, ¢) = Ee X(z(1,¢))
is a solution to the integral equation (14).

Proof. The finiteness of the expected value has to be established first. Let o > > 7 ¢(oy), U =
max{it(b;),j =1,...,m,}, and note that for each &, m(z,&) < e’ and m'(z,¢) < oe’. Then

N-1 7[
E:X(z(8,¢)) < Ue’[Eg{H aeSW} Z neSot ey L Ue! Z o'’ = U™V,
0 !

n=0 !
Let 1> 0, &= . By the lack of memory of the exponential distribution, (17) can be written recursively as

AO(&(O)) if N

(<))
X(t(t,€)) = { ' (Sioy, €)X (2(t = S0y, Eqy)) if Sy <t (18)

Use the mutual independence of S, and 7 to get

EX (1, &) =m(t, &)itg(E)P(S o)

V

1)+ Es{*ﬂ'(&ow EX(t =Sy, &+ '1<o>)1{S<o><r1}

=m(t,&)e "y (&) +/ e *m(s, é)[EA{X(t —5,&+11)|S0) = s}ds
0

=m(t, &)e "y (&) —|—/0 e m'(s, ﬁ)[EA{X(t —5,&+n0)|S0) = s}ds
/

=m(t, &)e i (&) +
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Heuristically, the underlying stochastic process can be thought of as a “construction” of 1(z, &) as follows:
fix & y = &, generate S, and compare its value to the termination time 7yo, = . In the event [S(o, > ] the tree
has no further vertices. If [S( < 7], the vertex (1)is created and it is assigned a random type &y = &y + 10
(see Fig. 1). Repeat this process at (1),{2), ... until no more new vertices arise. Assign the correct multipliers to
the NV resulting nodes, and evaluate (17).

2.1. Modeling

As a first step, i(z, ¢) is approximated by a Monte Carlo estimation of EX(z(z, £)) given by Eq. (17). Let &
and 7 be fixed. The construction of (¢, &) can be modified in such a way that only realizations that contribute
to the mean of X(z, &) are preformed, i.e., realizations with ity ((yy) # 0. For this, condition the expected value
of (17) on &y =&, N=n and ¢,y = B, to get

my

u(t, &) = Z zm: [E:{ [hm/(5<i>, é(i))] m(TUt)aﬁj)iIO(ﬁj)} %Pg(fw = B,)). (19)

=0

The Monte Carlo simulation of the expected value in Eq. (19) can be done as follows. For each ¢, n, and f;,
perform an appropriate number of random “backward walks” {é@»)}?:n with oy =B, E =P — g — 1y
— - —nu, i=n—1,...,0, and generate exponential times {S<i>}?;01 conditioned to [S¢y + -+ + S¢_1y < 1.

Then calculate the average of the product

i=0

n—1
[H m' (S, éuﬂ] m(t = (S + -+ S), B;)ito(B))

over all walks with &y = &.

The probabilities P:(¢.,y = f;), j=1,...,m,, can be computed from the nth power of the transition prob-
ability matrix of the Markov process {&; y =&+ @y + -+ + 1y - 1y}i = 1- The entries of this matrix are ob-
tained from (15).

Some remarks are in order. First, recall that the conditional distribution of (S, Sy + Say. -+,
Syt -+ Sep) given [Sy + - - - + S,y < f] is the same as the distribution of » increasingly ordered indepen-
dent random variables each having the uniform distribution on (0, ¢], (see [12] p. 280). Secondly, although the

> €

EJ(U) é( 1>

Fig. 1. Diagram of a realization of a tree 7 for the diffusion equation with N =3. The value of the multiplicative functional is
X(2,&) = m(S(ay, Eop)m(Sqys Eay)m(Say, E))m’(Ti3y, $3y)-
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summation over z in (19) is over all positive integers, the probability %?"Pg(ém) = ;) decreases to zero very
fast for moderate values of #, so only small trees have to be considered. For example, for values of ¢ close to 1,
trees with N > 15 have probability of the order 105, and so their contribution to the mean can be neglected.

A Picard iteration of the integral equation (12) can be used to assess the accuracy of the Monte Carlo sim-
ulation and improve the results. Let & be the approximation of E,X(z(t, ¢)), and for n > 0, define

222, (n rop, e, .
lf{(n+l)(t7 & =e % ’it(() >(f) + / engs{Z &(o;) u(n)(t N %)} ds, (20)

0 i=1
a sequence in the space of almost everywhere bounded functions L*(R). A solution to the diffusion equation in
Fourier space is a fixed point of Eq. (20), and the error of the nth approximation to the solution can be mea-
sured by

oo

~(n+1) ~(n)

7 —u
g, I =)
[ o
Crucial to the algorithm presented here is the introduction of the multipliers in (13). Previous attempts using
random times S¢; with frequency-dependent mean and time-independent multipliers m(&), led to very unstable
and non-convergent simulations (S. Dobson, E. Thomann, personal communication). This problem is cor-

rected by the definition of m(¢&, ¢) used here.
2.2. Example

Consider Eq. (10) with data c¢(x) = cosx, uy(x) = sinx. The problem in Fourier space is

2

u(t,¢&) = —%iji{(t, &) +%(51 +oy)*xu(t, &), u(é) = %(51 —0_1). (21)
Only trees (walks) with £y = £1 have to be constructed, and the solution is expected to be an odd function.
The number of generated walks of length N for each finishing should be large enough so all accessible values of
&y are well sampled, and the values of the aggregates S, Sy + S1,..., S0y + -+ + Sy_1 exhibit a good
approximation to a uniform distribution on (0, 7]. A simple heuristic rule is, for each N and ¢, to generate
a number of trees proportional to Nt. The error for this particular example showed little change for values
of the constant of proportionality over 1000, so this value was used. The iterates of (20) were computed
for 10 equally spaced time points in [0, 1], and the integration in time was performed with a simple trapezoidal
rule. A comparison between the consecutive iterates n =0,1 and n=4,5 is shown in Figs. 2 and 3. The
observed errors listed below indicate a linear rate of convergence.

n 0 1 2 3 4 5
E, 6.7x 1073 59x107* 1.6x107* 7.0%x 107 1.6x 107 3.2x107°

3. Viscous Burgers equation

Consider the viscous Burgers equation in T = [0, 1) with periodic initial condition uy = uy(x), periodic forc-
ing term f'= f{¢, x), periodic boundary conditions, and viscosity v > 0,

u(8) + V2ru(u () = vu (£) + f, >0,

(22)
u(0+7x) = Mo(x)a ”(ta O) = u(t, 1)

A solution to Eq. (22) will remain periodic for ¢ > 0, and therefore one has Fourier series representations for
uo, f, and u, with coefficients i (k, ¢), JA“(k7 t) and #(k, 1), respectively, k € Z.

Write uu, = 3(u?), and take Fourier transform of both sides of (22). Use the integrator factor e
tiply and divide by vk? inside the resulting integral, then

2
vk“s

, and mul-
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Fig. 2. Comparison between #* = E:X (dots) and 2 (lines) for the diffusion equation with data given by (21).

> ' 11 axa(t—s,k) 12f(t—s,k)
~ o~ —vk-t 2 —vkis - ’ - )
u(t, k) = ip(k)e +/0 vke [2 . T +3 e ds.
Now, make the following change of variables
R 1. X X . 21 (t,k
WK = e k), () = w(0.K), g0 k) = L),
v 1wk

Then w satisfies the following equation

Wit k) = o (k)e " + / Vi s B M + %g(t -, k)] ds,
0

t

where the convolution w x w 1s to be understood over Z as

Worb(t —s,k) =D w(t — s, j)W(t — s,k — j).

jez

129

(23)

(26)

The form of (25) is similar to that of (12), and the initial structure of the appropriate stochastic process can be
guessed. Let Sy be an exponentially distributed random variable of parameter vk?, and let ¢(oy be a fair coin

tossing with values in {0,1}. Eq. (25) can be written as
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0.01 t 1 t
0 0.5 1 1.5 2 0 0.5 1 1.5
Gcte) . Gct.e) ]
- X107 -x10°
5 : 5 o6
=5
£E=-5
£E=-6
5 : : : .t 5 : : t
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Fig. 3. Comparison between & (dots) and @ (lines) for the diffusion equation with data given by (21).

w(t, k) = [E{I[Sm)»]%(k) + Lisg<a [ €0) M‘F (I —c)g(t = S<o>,k)} } (27)
Note that if a discrete probability density function on j € Z is introduced in the summation (26), the convo-
lution could be interpreted (for each k) as an average of products of w evaluated at random frequencies. The
problem of finding such a density appears whenever stochastic cascades are used to solve partial differential
equations in Fourier space, and is linked to the more general problem of establishing existence and regularity
of solutions. In the more general case of the Navier-Stokes equations, the characterization of admissible den-
sities for the frequencies of offspring vertices was solved with the introduction of “majorizing kernels” in
[10,13,14]. .

It follows from Eq. (26) that any function decreasing as o(j 2) can be used to give a full probabilistic rep-
resentation of (25). This will provide the existence of solutions without restrictions on the support of iy and £
Some attempts to numerically model this problem have been made by S. Dobson, E. Thomann, A. Chorin A.
and P. Stinis (personal communications).

Here the simplest possible probabilistic representation of the convolution (26) is used through the following
assumption:

there exists K > 0 such that f(¢,k) = iip(k) =0 for all k < K. (28)
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It is due to a theorem of F. and M. Riesz (see [15, p. 335]) that property (28) implies that fand u, belong to the
Hardy space H', namely, the Banach space of functions with holomorphic extension to the unit disc with the
norm

1
N SRR RY:
e = tim {52 [ 17067 00}

Assume (28) holds and let Jg, be a uniformly distributed random variable taking values in {X, ...,k — K}, then
Vv*ﬁv(tk):{o’ K <k < 2K,
’ (k= 2K + 1) E{w(t,J o) W(t,k —J )}, k = 2K.
Denote py = (k — 2K + 1)~!, and write Eq. (27) as

R R [N . R
W(t, k) = E{I[S<0>>t]w0(k) + L5 < [C((»pkw(f — S0y, J ) )Wt — Sy, k —J ) + (1 = c0))g(t — S<O>,k)] }1[k>2K]
(0)

. [
+ [E{l[s<o>>z]wo(k) + L5 < {Wg(t - S<0>7k)} }1[k<2K]-
0
(29)

From the construction of the appropriate stochastic process associated to (27), it will follow that w(¢, k) sat-
isfies (28) for all > 0.

For k> 0 and ¢ > 0 consider a binary tree t = 7(¢, k) with a particle of type k assigned to its root vertex (0).
Let (2, 7, P;) be a probability space. Define a vertex-indexed stochastic process {k¢, y} v e - With k¢ = k, sat-
isfying the conservation rule

ki = kpiy +kpay, (V) €1, (30)
and with increments k¢,1y — k¢ = J(y conditionally distributed as,
, 1
Pe(J wy = jlku, cw) = o~ 2K+ 1 Lk > 261 Ly =1) 2= Py (31)

Let ¢,y be fair coin tosses taking values on {0, 1}. Introduce “waiting times’’ S,y with conditional exponential

distributions given by
2 s
Pk(S<v> > s | k@-)) = ef‘k<v>‘, s> 0.

Finally, for (v)ez, define termination times as
[(v)|-1
Ty=t=Y Swuy To=t (32)
j=0

where [(v)| and (v)|j are defined in Section 1.
A multiplicative functional of {ky, Sqy, cwy} vy - related to w can now be constructed in a similar way as in
Section 2. Consider

X(T(t’ k)) = X(tv k) = HM<L=) (33)
(v)er

with multipliers given by
wo (k) ift Sy > T,
38(Tiy ki) if ki < 2K, Sy <
§(Tw kw)  if ky > 2K, Sy <
1 if k) = 2K, <

T,

Ty, c
Ty cq)

v
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Then the following holds:

Theorem 3.1. Assume f(t,k) = iig(k) =0 for all k<K, and that there is o > 0 such that |iig(k)| < ve ™,
(1, k)| < 2K k e for k > K,t > 0. Then Burgers equation (22) has a unique solution i.. Moreover,

u(t,k) =0, k<K and l|u(t,k)|<ve™, k=K, t>0,
and u(t, k) is explicitly given by
u(t, k) = iv B X(z(t,k)).

Proof. The bounds on # and f combined with (24), and the definition of p,, give the following bound for the
random product in (34),

kpy —2K +1
X(t, k) < exp{ Z k@)} H <>k—7
(v (

)er\p E &
where 7p is the set of vertices where branching occurs, namely,
5 = {(v) € Tk = 2K or Sy < Ty OF ¢y = 1},
Since o >0 and 0 <K<k, then \[EkX(r(t, k))| < oo. Moreover, the conservation rule (30) gives
> werkw =k, so the estimate for [i(¢, k)| holds and i(t, k) = 0 for k < K. Due to the Markovian character

of the waiting times S, and the mutual independence between ¢,y and Ji,, the following recursive represen-
tation of X is available,

Wo (ko)) if Sy > T),
X( (t i )) B %g(TO 7k ) if k(o) < 2k0,S<0> < T<0>, (35)
RO &(T ) k) if ko) = 2K, S0, < T(o),¢0) =0,
o X (T k) )X (2(T 0y, k)i ko) = 2K, S10) < Tiopse0) = 1,
Conditioning on the cases of (35) gives that E;X(z(z,k)) satisfies Eq. (23). O

3.1. Modeling

Because of the binary tree structure of 7, conditioning on the frequencies at the terminating vertices does not
simplify the computation of X(t) as it did for the example in Section 2. Here, the realizations of the multipli-
cative functional can be done constructing trees from the root vertex following Eq. (35) (see Fig. 4). The root
particle of type k(y = k holds for the exponential time S, which is compared to Ty y = t. If [S¢gy > #], then no
further vertices are used. If [S(, < ¢] occurs, a coin c(y is tossed. In the event ¢y = 0, again the construction
stops. If ¢y = 1, branching occurs, and the new vertices (1) and (2) are created with random types k;y = Jioy
and ko) = kqy — J(o), respectively. The same process is followed independently with trees rooted in (1) and
(2). Whenever a vertex (v) has type k,, < 2K, then S, is compared to the respective termination time but no
coin is tossed, and no branching occurs. The multipliers are then assigned to the vertices according to (34).

The integral equation (23) can be used to test the error in any numerical estimation of the expected value in
Theorem 3.1. Define #* to be the approximation provided by Monte Carlo algorithm, and define the follow-
ing iterates:

t ~(n) () 7
n+l ~ —vk2t 2 ks |[UT KU (t -5, k) f(t -9, k)
(1, k) = iy (k)e +/0 vice [ o | ds (36)

The sequence {i(,)},-, forms a Picard iteration of which the solution # is a fixed point. The error at each term
can be measured with

o =
]

o0
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San>Tan
I--
S(Il])
S(Jl)
S‘l)
= 1>
kps2k ~ Jo=l So»
<0»
K 2K k=k.,
Fig. 4. Diagram of a realization of a tree = for Burgers equation with N = 3. The value of the multiplicative functional is X(#,k) =
8Ty k) A N .
oot 3 (T k)i oo (kg Do (k) ).
{83 )l
(to) - (t) -
0.1 0.1
0.098 0.0925
0.096 0.085
0.094 0.0775
0.092 : : : : t 0.07 : : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
1)l 1G(t.8)!
0.1 ‘: =3 01 E_, =4
0.09 0.0875
0.08 0.075
0.0625
0.07 0.05
0.06 t t
0
)l _ 1(t.8)! _
0.1 &=5 0.1 &=6
0.08 0.08
0.06 0.06
0.04 0.04
0.02 0.02
t
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 t
l(t.e)l la(t.)!
1 £=7 041 £E=8
0.08 0.0775
0.06
0.055
0.04
0.02 0.0325
t 0.01 t
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 5. Comparison between #” = E:X (dots) and 4 (lines) for Burgers equation with data given by (37).
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3.2. Example

Consider the Fourier transformed Burgers equation with data given by

R . ~ iV2k2 2

(k) =iv, f(t,k) = 5 (I1—=9)7, te(0,1), k> 1. (37)
By Theorem 3.1, ii(¢, k) = ivE, X(z(z,k)) is the unique solution to this equation. A numerical approximation to
2 was calculated for k =1,...,8 and 10 discrete time points in [0, 1]. The number of computed realizations of

X(t) was proportional to ¢ for frequencies k(y <2K, and proportional to (¢+ k — 2K) for frequencies
kqy = 2K. The proportionality constant used was 3000. Some terms of the sequence {a<”>} defined by (36) were
calculated using a simple trapezoidal rule for the integration on time. A comparison between the complex
norm of the consecutive iterates for n = 0,1 and n =4,5 is shown in Figs. 5 and 6. The observed errors, as
defined by (3.1), are listed below.

n 0 1 2 3 4 5
E, 1.8x 1072 2.1%x1073 40x%x107* 1.0x107* 2.1x107° 22%x107°

[G(,e)l
(te) to2
0.1
0.0925
0.085
0.0775
t 0.07 t
)l [H{23]
041 E.- =3 01 é =4
0.09 0.0875
0.08 0.075
0.0625
0.07 0.05
0.06 t N
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
[G(,e)l [G(,e)l
01U( &) t=5 u(t) t-6

0.08
0.06
0.04
0.02

[#3] 10E)!
0.1 £=7 01 £=8
0.08 0.075
0.06
0.04 0.05
0.02 0.025

1 1 1 1 J 0 1 1 1 1 J
0 02 04 06 08 1t 0 02 04 06 08 1t

Fig. 6. Comparison between ii¥ (dots) and #® (lines) for Burgers equation with data given by (37).
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4. Concluding remarks

Monte Carlo techniques are developed to model the random multiplicative cascades associated with two
partial differential equations: linear diffusion and viscous Burgers equation. The Fourier transformed solution
of the PDE is written as the expected value of a random aggregate of its main components, i.e., initial con-
dition, nonlinear terms and forcing terms. These aggregates are evaluated at random frequencies &, (or k),
and random times S, indexed by (v)et, where 7 has a tree structure. The choice on the distributions of &
and S, y determine the limitations and scope of the multiplicative cascade representation.

Exponential waiting times S, with parameter dependent on k¢, arose naturally in both examples presented
here (see Egs. (12) and (23)). Computational stability considerations led to the removal of this dependence for
the case of the diffusion equation. The exponential distribution has the advantage of giving Markov structure
to the resulting stochastic process (see proof of Theorem 2.1), and it also simplifies the numerical modeling.
Multiplicative cascade representations using distributions for the waiting times different than exponential are
considered in [14].

In the examples presented here, the transition distributions for the frequency process { &} ¢»e. are chosen
so both the analytical and the modeling problem are considerably simplified. This selection imposes restric-
tions on the PDE’s data for which a multiplicative cascade representation gives a solution. There is however,
no “physical” reason behind the choices made here. The identification of processes { &, y} (e that correspond
with the physical situations the partial differential equations arise from is still unexplored. Simulations such as
those presented here can be used to study the relationship between this processes in frequency space, and
known qualitative features of the solutions.
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